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In this paper we numerically check the validity of a theory on the distribution of zeros of the Husimi
function due to Leboeuf and Voros@J. Phys. A23, 1765 ~1990!# for the integrability or chaoticity of a
dynamical system in conditions which are not covered in the original proof. Our results for a generic Hamil-
tonian model for the LiCN molecule indicate also that in this case the conclusions of these authors hold. We
have also found that this criterion is related to that proposed by Stratt, Handy and Miller based on the nodal
complexity of the wave function@J. Chem. Phys.71, 9911~1979!#. Also, for scarred states there is a relation
between the positions of the zeros and the fixed points of the Poincare´ map corresponding to the scarring
periodic orbit, which is the main result of the paper.@S1063-651X~96!06409-4#

PACS number~s!: 05.451b, 03.65.Sq, 34.30.1h

I. INTRODUCTION

The correspondence between classical and quantum me-
chanics is a topic of renewed interest@1–4#, specially in
relation with the question of which is the quantum equivalent
of classical chaos@5#.

Chaos is a phenomenon well characterized from the clas-
sical point of view. Parameters such as the Lyapunov expo-
nents@6#, graphical representations such as the Poincare´ sur-
faces of section@7#, or the frequency analysis of the motion
@8#, are among the numerous tools that provide a detailed
picture of the different regimes of a dynamical system. Non-
linear dynamics have firmly established that the best way to
study chaos is to consider it within the framework of phase
space@7#. With this approach this field has bloomed in the
past two decades, giving rise to numerous important ad-
vances. On the other hand, the topic of ‘‘quantum chaos’’ is
not so well developed and there are still many open ques-
tions in this field. Several criteria have been proposed for the
existence of ‘‘quantum chaos,’’ such as level spacings statis-
tics @9#, sensitivity of eigenvalues to changes in the Hamil-
tonian @10#, or avoided crossings of energy levels@11#. An-
other one, which is very much related to the present work, is
that of the nodal pattern complexity of wave functions@12#.
According to it, states with a clear nodal pattern, in which
the number of quanta in all degrees of freedom is clearly
discernible, are classified as regular, while a complex nodal
pattern is indicative of irregular or chaotic states. In this
respect, the work of De Leon, Davis, and Heller@13# warned
about the importance of considering classical resonances
when doing this type of classification.

Other authors have considered the question of the quan-
tum equivalent of classical chaos in the context of phase
space. Much of this work has its start in an early paper of
Wigner @14# who defined the following transform of the
wave function

W~P,q!5~2p\!2DE C* ~q2x/2!C~q1x/2!eiP•x/\dDx,

~1!

as a quasiprobability density in phase space, beingD the
number of degrees of freedom. Very early it was realized
that the Wigner function suffers from the defect of not being
positive definite@15#. In subsequent papers other authors
solved this problem by defining, for example, functions suit-
ably smoothed over regions of phase space of volume of the
order of \D. Probably the most popular one is the Husimi
function @16#, which corresponds to a Gaussian smoothing
and can be expressed in a very simple way

H~P,q!5~2p\!2Du^zuC&u2, ~2!

whereuz& is a harmonic oscillator coherent state@17#. Due to
Eq. ~2!, the Husimi function is also called coherent state
representation, and it can be interpreted in a variety of ways
@18#. Based in these two or other quasiprobability densities
one can define quantum analoges~QSOS! to the classical
Poincare´ surface of section@19#.

Many studies have been reported in the literature@20,21#
based on the Husimi function for different systems, ranging
from very simple analytical models to accurate molecular
systems. The vast majority of them have concentrated on the
maxima of the Husimi function, and discussed their relation
with classical structures, mainly unstable periodic orbits. To
refer to the influence of periodic orbits on the structure of the
wave functions, the term ‘‘scarring’’ has been coined@22#,
and this is a topic that has received much attention in the
literature. Scarring consists, as it is suggested by its name, in
an accumulation of probability on periodic orbits, that con-
stitute then a sort of backbone along which a sequence of
perpendicular nodal planes~defining the corresponding
quantum number! can be found. Obviously this has an effect
in the QSOS, which in those cases shows maxima centered
approximately on the corresponding fixed points.

Recently, Leboeuf, Voros, Cibils and others published a
series of papers@23–25# in which they considered also the
distribution of zeros of the Husimi function in different sys-
tems. In the first paper, Leboeuf and Voros@23# demon-
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strated that in the case of a quantum system having a two-
dimensional compact phase space, an arbitrary state of
Hilbert space is completely defined by the zeros of the Hu-
simi function. Moreover, for the eigenstates of the system,
the distribution of zeros reflects, in the semiclassical limit,
the underlying classical dynamics. If the system is classically
integrable the zeros are localized on a line, while if the sys-
tem behaves chaotically the zeros are spread all over the
available phase space. In a subsequent paper@24#, Leboeuf
studied the time evolution of these zeros, considered as par-
ticles. He found that in chaotic systems the nonlinear terms
induce interactions between the particles, leading them to
uniformly cover all the available phase space, as it happens
with its classical counterpart. In 1992 Cibilset al. @25# ex-
tended these studies to more general systems, and calculated
the distribution of zeros for the spin-boson model@26#. This
system presents significant differences with the class of sys-
tems considered by Leboeuf and Voros: in the first place the
corresponding phase space for the spin-boson system is un-
bounded, and secondly, the dimension of that space is four
instead of two. Considering QSOS, to overcome the second
difference, these authors numerically checked that Leboeuf
and Voros conclusions are also valid for this model. In all
these three works it was emphasized the importance of con-
sidering the semiclassical limit, and accordingly a small
value of the parameter\ was used.

In this paper we investigate, in the same spirit of Cibils
et al. the conjecture that Leboeuf and Voros result seems to
be more general than suggested by the original proof. Ac-
cordingly, we have examined the distribution of zeros of the
Husimi function for a realistic Hamiltonian model of the
LiCN molecule. The organization of the paper is as follows.
In the next section we describe the characteristics of the
LiNC-LiCN molecular system used in our study and the cal-
culations carried out. In Sec. III the wave function, QSOS
and distribution of zeros for some representative states are
presented and discussed, and finally our conclusions are
summarized in the last section.

II. SYSTEM AND CALCULATIONS

The system that we have chosen to study corresponds to a
realistic model for the LiNC-LiCN isomerizing system@27#.
The vibrations of this molecule can be adequately studied by
a two degrees of freedom model (D52), where the CN dis-
tance is kept frozen at its equilibrium value ofr e52.186 a.u.
The classical vibrational Hamiltonian (J50) is given in Ja-
cobi coordinates by

H5
PR
2

2m1
1
1

2 S 1

m1R
2 1

1

m2r e
2DPu

21V~R,u!, ~3!

whereR is the modulus of the vector from the CN center of
mass to the Li nucleus,r e the modulus of the vector from
nucleus N to nucleus C,u the angle formed by these two
vectors, andm1 andm2 the corresponding Li-CN and C-N
reduced masses.

The potential energy surface,V(R,u), has been taken
from the literature@28#, and is shown in Fig. 1 as a contour
plot. It presents two stable isomers at the linear configura-
tions. The most stable one is LiNC that appears at

u5180°, being the other LiCN located atu50°. The
isomerization barrier is only 3454 cm21; the Li atom can
then easily perform large amplitude motions in theu coordi-
nate, sampling extensive regions of the potential energy sur-
face. This causes that chaos sets in at low values of the
excitation energy. Let us remark that although the calculation
of Esser, Tennyson, and Wormer@28# is of relatively low
level for actual standards in quantum chemistry@29#, it is
sufficiently realistic for the purpose of our dynamical re-
search, since it contains many relevant molecular character-
istics: anharmonicities, mode coupling, possibility of isomer-
ization, etc.

Classical trajectories are calculated using a Gear algo-
rithm for the numerical integration of the Hamilton equations
of motion corresponding to Eq.~1!. For each trajectory a
Poincare´ surface of section is computed by taking the mini-
mum energy pathRe(u) connecting the two isomers as the
sectioning plane~see Fig. 1!. This procedure gives the maxi-
mum dynamical information of the motion in the angular
coordinate. SinceRe depends onu, and in order to make the
surface of section an area preserving map, it is necessary to
make the following canonical transformation@21#

r5R2Re~u!, c5u

Pr5PR , Pc5Pu1PR@dRe~u!/du#. ~4!

For the quantum calculations we have used the discrete
variable representation–distributed Gaussian basis~DVR-
DGB! program of Bacˇić and Light@30# with a final basis set
of 416 elements to obtain the first 100 vibrational states with
the corresponding eigenvalues converged to within 0.01
cm21. In our case, and in order to be able to compare with
the classical results, we have also calculated Husimi based
QSOS,HQSOS, using the same definition described above,
i.e., r50 andPr in a predetermined branch of the momen-
tum function given by the energy conservation condition,

HQSOS~c,Pc!5H@c,r50,Pc ,Pr5Pr~E!#. ~5!

Moreover,HQSOS ~in the same way asH) is the squared
modulus of a complex functionF, so that it can be written as

HQSOS~c,Pc!5~2p\!22@ Re2F1 Im2F#. ~6!

FIG. 1. Potential energy surface of the LiNC-LiCN isomerizing
system. The minimum energy path connecting the two stable iso-
mers, LiCN atu50° and LiNC atu5180°, is shown as a dotted
line.
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The QSOS defined in this way has been numerically calcu-
lated and full details will be given elsewhere@31#. Due to the
fact thatF is not an analytic complex function, the technique
used by Cibilset al. to calculate the zeros of the Husimi
function is not directly applicable. Accordingly we have used
a suitable modification devised by us. The available
(c,Pc) phase space plane is divided into square cells, and
then the number of zeros contained in each cell calculated.
This is done in the vector field associated to the QSOS ac-
cording to

~c,Pc!→
T

~ ReF, ImF!, ~7!

using the fact that the index of a curve@32# is equal to the
number of zeros contained in the area enclosed by it@33#. In
our case the indexI is defined as

I~g!5
1

2p R
g
dF tan21S ImF

ReF D G . ~8!

Note that this is an extension to applicationsR2→R2 of the
well known principle of the argument of complex variable
that holds in applicationsC→C @34#.

To conclude this section we would like to point out that
the computer effort involved in the calculation of the zeros
of the QSOS is not small in our case, since the integration
required for the calculation of the Husimi function is done
numerically @31#. The calculation of each point in the
(c,Pc) plane takes 7.5 seconds in an IBM Risc 6000 work-
station, and to characterize each zero not less than 736 points
are required~the actual number of points depends on the
indeterminacies encountered! @33#.

III. RESULTS AND DISCUSSION

In this section we discuss the results concerning the first
100 quantum eigenstates of the LiNC-LiCN system. In Fig. 2
we show the wave function, zeros and QSOS of stateN511
~in what followsN will be used as the state number starting
from N51 for the ground state!. It is seen that this state
presents a well defined wave function nodal structure, corre-
sponding to the quantum numbers (nr ,nc)5(0,14). Since it
is excited solely in the angular coordinate all maxima in the
QSOS are located close to the border of the classically avail-

FIG. 2. ~a! Wave function,~b! zeros, and~c! quantum surface of
a section for the regular stateN511. Contours lines are drawn at
4%, 8%, 16%, 32%, and 64% of the maximum amplitudes of the
functions. Those which are solid represent positive amplitude while
the dashed represent negative amplitude. The minimum energy path
of the potential energy surface has also been included.

FIG. 3. Same as Fig. 2 for the regular stateN517.
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able phase space area as can be appreciated in the figure.
Moreover, the zeros are aligned along a curve lying very
close to thePc50 axis. This result is in perfect agreement
with the conclusions of Refs.@23–25#, which is not unex-
pected since stateN511 is clearly regular. Let us consider
next the relationship existing between distribution of zeros
and wave function nodal structure. By comparing of parts~a!
and~b! of Fig. 2 it is apparent that there are as many zeros as
nodal planes and that the location of them~approximately!
coincides. This result is very interesting since it implies a
connection between Leboeuf and Voros criterion which is
based on phase space considerations, and Stratt, Handy, and
Miller criterion which is based on configuration space con-
siderations. Let us remark that the above result is character-
istic of anharmonic systems, since in the case of a harmonic
oscillator all zeros accumulate at the origin of coordinates.

A second example is presented in Fig. 3, where the results
corresponding to theN517 quantum state are shown. Ac-
cording to the nodal structure complexity criterion it corre-
sponds to a regular state with quantum numbers
(nr ,nc)5(1,10). In this case there is excitation in ther
coordinate, which reflects in the fact that the maxima of the
QSOS are not located around the border of the available

phase space, but more towards the inner part. However, this
does not affect the structure of the distribution of zeros,
which is similar to that found in the previous case. Obvi-
ously, the information about the excitation inr is contained
in the other Poincare´ surface of section, i.e.,HQSOS(r,Pr)
corresponding toc5180° for the LiNC isomer orc50° for
the LiCN isomer. Similar results have been obtained for all
states in our calculation which present a well defined nodal
pattern.

The criterion of the wave function nodal structure com-
plexity is necessarily qualitative. In particular, the number of
nodes is very sensitive to the wave function amplitude level
which is considered. In general, one focuses on the high
values of the amplitude@12# where the pattern is more clear.
But when low levels are considered a much more compli-
cated nodal structure might emerge. A good example of this
is state number ten, which is shown in Fig. 4. In the part
corresponding to the wave function@panel~a!# we have in-
cluded, in addition to the contour levels used in the previous
figures a low contour corresponding to 1024% of the maxi-
mum amplitude. According to the structure of these contours
the classification is a little uncertain. If one just takes into
account the high level contours, the wave function presents a
well defined nodal pattern corresponding to state

FIG. 4. Same as Fig. 2 for the stateN510. An extra contour line
representing 1024% of the maximum amplitude of the wave func-
tion has been included.

FIG. 5. Same as Fig. 2 for the irregular stateN599.
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(nr ,nc)5(1,4). However, when the low level contour is
considered an extra, not very well defined, seminode appears
at u.117°. In panel~b! it is seen that at the position of the
seminode there is a zero, that in this case is not close to the
Pc50 axis. This result indicates that the distribution of ze-
ros constitutes a very sensitive criterion for analyzing the
nodal pattern complexity.

A lot of caution must be exerted when considering low
contours of the wave functions, since they ultimately reflect
the structure of the basis set functions. In our case we have
checked the robustness of our conclusions by repeating se-
lected calculations with a basis set of 2016 elements which
gives 900 converged eigenvalues.

In Fig. 5 the results corresponding to stateN599 are
shown. The nodal pattern is clearly irregular, and the zeros
are spread uniformly over the available phase space, again in
agreement with Leboeuf and Voros result.

Let us point out that all calculations that we are reporting
here have been obtained for\51 a.u.. Thus the results seem
to indicate that this value of\ is low enough in our system to
allow for this type of studies. On the other hand changing the
value of\ in a generic Hamiltonian like ours would intro-
duce additional complications. For example, lowering\ in-

creases the number of states that can be ‘‘accommodated’’ in
the regular region~see Fig. 8 below!. Moreover, since LiNC-
LiCN has a potential surface with two separate wells, with
states that behave differently with\, changing this parameter
causes the appearance of a complicated series of avoided
crossings, some isolated and others overlapping@11#. The
disentanglement of this problem is not easy, and this is a task
that we are performing at present. Some preliminary results
have been published in Ref.@35#, in which we showed how a
transition from chaos~scarred states! to regularity takes place
as\ is decreased.

As we stated in the Introduction the criterion of nodal
pattern complexity presents some problems when there are
classical resonances in the system@13#. In this case very
often some wave functions appear scarred by any of the two
periodic orbits, one stable and the other unstable, corre-
sponding to the resonance. In the rest of the discussion we
will refer to these two periodic orbits as complementary in
the sense that they come from the same unperturbed resonant
invariant torus@7#.

The LiNC-LiCN system, due to its dynamical complexity,
presents a great number of resonances even at modest exci-
tation energies, and we have presented a systematic study of
the corresponding bifurcation diagrams in Ref.@36#. Among

FIG. 6. Same as Fig. 2 for the scarred stateN524. In panel~a!
we have plotted, superimposed, the scarring periodic orbit~instead
of the minimum energy path!.

FIG. 7. Same as Fig. 6 for the scarred stateN525.
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of all them there is one resonance, belonging to the principal
family, that has a profound influence in the quantum me-
chanics of this system in the range of energies considered in
this paper~up to 4610 cm21). The associated unstable and
stable periodic orbits are shown in Figs. 6~a! and 7~a! respec-
tively. In Fig. 8 we also present a composite Poincare´ surface
of section, calculated at an energy of 2568.03 cm21 ~inter-
mediate between the eigenvalues of states 24 and 25!, in
which the corresponding fixed points are clearly visible~tri-
angles and squares, respectively! in the middle of a chaotic
sea. From Figs. 6~a! and 7~a!, it is apparent that these orbits
‘‘scar’’ the wave functions of statesN524 andN525. This
is also appreciated in Figs. 6~c! and 7~c!, where it is seen that
the corresponding QSOS present maxima centered on the
classical fixed points~see Fig. 8!. The examination of the
distribution of zeros in Figs. 6~b! and 7~b! reveals some in-
teresting results. In the first place, and similarly to what is
obtained for regular states, in both cases there are as many
zeros as nodal planes~that in this case must be counted along
the periodic orbit!. Secondly, and more important, two types
of zeros are obtained: some of them appear distributed along
a curve close to thePc50 axis, again as for a regular state,
while the rest localize over the fixed points of the periodic
orbit complementary to the one ‘‘scarring’’ the state.

IV. CONCLUSIONS

In this paper we have presented a quantum study in phase
space of the vibrational states of a realistic model for the
molecular isomerizing system LiNC-LiCN for excitation en-
ergies up to 4610 cm21. Due to the characteristics of the
potential energy surface, the Li atom can execute large am-
plitude motions in the bending coordinate. This causes the
system to present a very chaotic behavior, even at low vibra-
tional energies. This study has been carried out by numeri-
cally calculating QSOS based on the Husimi function. Al-
though the maxima of these QSOS contain information about
the correspondence between classical and quantum mechan-
ics, in this paper we have focused on the corresponding dis-
tribution of zeros.

The distribution of zeros of the Husimi function as a cri-
terion for chaos in quantum mechanics is relatively new@23#
and consequently has not received much attention in the lit-
erature yet. Leboeuf and Voros found that for a particular
class of systems these zeros appear localized on a line for
classically integrable systems, while they spread all over the
available phase space for systems that behave chaotically.

In this paper we have investigated the validity of the con-
clusion of Leboeuf and Voros conclusions in generic Hamil-
tonian systems. Our numerical calculations for the LiNC-
LiCN molecule indicate that this seems to be the case.
Moreover, we have also seen that this criterion is related to
that of Stratt, Handy, and Miller@12# based on the nodal
complexity of the wave functions. Specifically, we have seen
that the number of zeros is equal to the number of nodes of
the wave function~even if they are not completely well de-
fined! and that their positions coincide. Finally, and we be-
lieve that this constitutes the main contribution of this paper,
for states which are scarred by periodic orbits some zeros
appear localized on the fixed points of the Poincare´ map of
the complementary~in the sense of stable-unstable! periodic
orbit.
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