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In this paper we numerically check the validity of a theory on the distribution of zeros of the Husimi
function due to Leboeuf and Vordd. Phys. A23, 1765 (1990] for the integrability or chaoticity of a
dynamical system in conditions which are not covered in the original proof. Our results for a generic Hamil-
tonian model for the LICN molecule indicate also that in this case the conclusions of these authors hold. We
have also found that this criterion is related to that proposed by Stratt, Handy and Miller based on the nodal
complexity of the wave functiofiJ. Chem. Phys71, 9911(1979]. Also, for scarred states there is a relation
between the positions of the zeros and the fixed points of the Pointapecorresponding to the scarring
periodic orbit, which is the main result of the pape31063-651X96)06409-4

PACS numbgs): 05.45+b, 03.65.Sq, 34.36:h

I. INTRODUCTION as a quasiprobability density in phase space, bé&nthe
number of degrees of freedom. Very early it was realized
The correspondence between classical and quantum mthkat the Wigner function suffers from the defect of not being
chanics is a topic of renewed interddt—4], specially in  positive definite[15]. In subsequent papers other authors
relation with the question of which is the quantum equivalentsolved this problem by defining, for example, functions suit-
of classical chaog5]. ably smoothed over regions of phase space of volume of the
. Chao_s is a phenomenon well characterized from the clasgrder of #P. Probably the most popular one is the Husimi
sical point of view. Parameters such as the Lyapunov expofnction [16], which corresponds to a Gaussian smoothing
nents[6], graphical representations such as the Poinsare 54 can be expressed in a very simple way
faces of sectiofi7], or the frequency analysis of the motion
[8], are among the numerous tools that provide a detailed _ -D 2
picture of the gifferent regimes of a dynamFi)caI system. Non- H(P.a)=(2mh)~"[(Z V)%, @
linear dynamics have firmly established that the best way to , ) ,
study chaos is to consider it within the framework of phase¥here|z) is a harmonic oscillator coherent stal&]. Due to

space[7]. With this approach this field has bloomed in the EQ. (2), the Husimi function is also called coherent state
past two decades, giving rise to numerous important adrepresentation, and it can be interpreted in a variety of ways
vances. On the other hand, the topic of “quantum chaos” ig18]. Based in these two or other quasiprobability densities
not so well developed and there are still many open quesene can define quantum analog&3SOS to the classical
tions in this field. Several criteria have been proposed for th@oincaresurface of sectiof19].

existence of “quantum chaos,” such as level spacings statis- Many studies have been reported in the literaf@®@21]

tics [9], sensitivity of eigenvalues to changes in the Hamil-based on the Husimi function for different systems, ranging
tonian[10], or avoided crossings of energy levgkl]. An-  from very simple analytical models to accurate molecular
other one, which is very much related to the present work, igystems. The vast majority of them have concentrated on the
that of the nodal pattern complexity of wave functiqd®]. ~ maxima of the Husimi function, and discussed their relation
According to it, states with a clear nodal pattern, in whichyth classical structures, mainly unstable periodic orbits. To
the number of quanta in all degrees of freedom is clearlyefer to the influence of periodic orbits on the structure of the
discernible, are classified as regular, while a complex nodaj,5ye functions, the term “scarring” has been coir@2],
pattern is indicative of irregular or chaotic states. In thisg 4 this is a topic that has received much attention in the
respect, the work of De Leon, Davis, and HelléB] warned o atire. Scarring consists, as it is suggested by its name, in

\?v?]oetﬁlt JQ; glThri):rtt)?gg%focflagc;ﬂiséggggg classical resonanceg, accumulation of probability on periodic orbits, that con-
Other authors have considered thé guestion of the quaﬁc'-titUte then a sort of backbone'ailong which a sequence of
tum equivalent of classical chaos in the context of phasgerpendlcularbnodalbpl:lnesgegr;)m_g t?e h(_:orhrespond]lcpg
space. Much of this work has its start in an early paper ofiu@ntum numbgrcan be found. Obviously this has an effect
Wigner [14] who defined the following transform of the N the QSOS, which in those cases s.hows maxima centered
wave function approximately on the corresponding fixed points.
Recently, Leboeuf, Voros, Cibils and others published a
_ D _ iP-x/%iAD series of paperf23—25 in which they considered also the
W(P,q)=(27) f V*(a-x2)¥(q+x/2) e, distribution of zeros of the Husimi function in different sys-
(1) tems. In the first paper, Leboeuf and Vor#&3] demon-
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strated that in the case of a quantum system having a two- 6.5
dimensional compact phase space, an arbitrary state of 6.0
Hilbert space is completely defined by the zeros of the Hu- 65
simi function. Moreover, for the eigenstates of the system, 5'0

the distribution of zeros reflects, in the semiclassical limit,

—_

the underlying classical dynamics. If the system is classically 549

integrable the zeros are localized on a line, while if the sys- Lo =

tem behaves chaotically the zeros are spread all over the &35

available phase space. In a subsequent pgptr Leboeuf 3.0

studied the time evolution of these zeros, considered as par- 25

ticles. He found that in chaotic systems the nonlinear terms 2.0 ! . !

induce interactions between the particles, leading them to 0 ® o (;‘gg) 198 180

uniformly cover all the available phase space, as it happens

with its classical qounterpart. In 1992 Cibits al. [25] ex- FIG. 1. Potential energy surface of the LINC-LICN isomerizing
tended these studies to more general systems, and calculatsgtem_ The minimum energy path connecting the two stable iso-

the distribution of zeros for the spin-boson mofi#8]. This  \ers. LiCN até=0° and LINC até=180°, is shown as a dotted
system presents significant differences with the class of SySie.

tems considered by Leboeuf and Voros: in the first place the
corresponding phase space for the spin-boson system is up=180°, being the other LICN located a#=0°. The
bounded, and secondly, the dimension of that space is foysomerization barrier is only 3454 cnt; the Li atom can
instead of two. Considering QSOS, to overcome the seconghen easily perform large amplitude motions in theoordi-
difference, these authors numerically checked that Leboelfate, sampling extensive regions of the potential energy sur-
and Voros conclusions are also valid for this model. In allfgce. This causes that chaos sets in at low values of the
these three works it was emphasized the importance of corexcitation energy. Let us remark that although the calculation
sidering the semiclassical limit, and accordingly a smallof Esser, Tennyson, and Wormgz8] is of relatively low
value of the parameter was used. N ~level for actual standards in quantum chemigi@g], it is

In this paper we investigate, in the same spirit of Cibilssyfficiently realistic for the purpose of our dynamical re-
et al. the conjecture that Leboeuf and Voros result seems t@earch, since it contains many relevant molecular character-
be more general than suggested by the original proof. Acistics: anharmonicities, mode coupling, possibility of isomer-
cordingly, we have examined the distribution of zeros of thejzation, etc.
Husimi function for a realistic Hamiltonian model of the Classical trajectories are calculated using a Gear a|go_
LICN molecule. The organization of the paper is as follows.rithm for the numerical integration of the Hamilton equations
In the next section we describe the characteristics of thgf motion corresponding to Eq1). For each trajectory a
LINC-LICN molecular system used in our study and the cal-pgincaresurface of section is computed by taking the mini-
culations carried out. In Sec. lll the wave funCtlon, QSOSmum energy patme( 6) Connecting the two isomers as the
and distribution of zeros for some representative states argactioning planésee Fig. L This procedure gives the maxi-
presented and discussed, and finally our conclusions aggym dynamical information of the motion in the angular

summarized in the last section. coordinate. Sinc®, depends or®, and in order to make the

surface of section an area preserving map, it is necessary to
Il. SYSTEM AND CALCULATIONS make the following canonical transformati@?i]
The system that we have chosen to study corresponds to a p=R—Ry(0), ¢=0

realistic model for the LINC-LICN isomerizing systei7].

The vibrations of this molecule can be adequately studied by P,=Pgr, P,=Py+PgldR(6)/d6]. 4

a two degrees of freedom modé &€ 2), where the CN dis-

tance is kept frozen at its equilibrium valuergf=2.186 a.u. For the quantum calculations we have used the discrete

The classical vibrational Hamiltoniad € 0) is given in Ja- Variable representation—distributed Gaussian b&S¥R-

cobi coordinates by DGB) program of Baix and Light[30] with a final basis set

of 416 elements to obtain the first 100 vibrational states with

P2 1/ 1 1 the corresponding eigenvalues converged to within 0.01
H=——+ | —=+—|P2+V(R,0), (3 cm™L In our case, and in order to be able to compare with
2puy 2\ pmR® porg

the classical results, we have also calculated Husimi based
fQSOS,HQSOS, using the same definition described above,

i.e.,p=0 andP,, in a predetermined branch of the momen-

tum function given by the energy conservation condition,

whereR is the modulus of the vector from the CN center o
mass to the Li nucleus,, the modulus of the vector from
nucleus N to nucleus C4 the angle formed by these two
vectors, andu; and u, the corresponding Li-CN and C-N Hosod #,P,)=H[#,p=0P,,P, =P (E)]. (5)
reduced masses. Q v vt

The potential energy surfac&/(R,6), has been taken Moreover, Hgsos (in the same way a#l) is the squared

from the literaturg 28], and is shown in Fig. 1 as a contour modulus of a complex functio®, so that it can be written as
plot. It presents two stable isomers at the linear configura-

tions. The most stable one is LINC that appears at Hosod #.P,) = (27h) ~’[ RED+ Im?®]. (6)
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FIG. 2. () Wave function(b) zeros, andc) quantum surface of FIG. 3. Same as Fig. 2 for the regular stite 17.

a section for the regular staté=11. Contours lines are drawn at

4%, 8%, 16%, 32%, and 64% of the maximum amplitudes of thengte that this is an extension to applicatidR$— R? of the
functions. Those which are solid represent positive amplitude whilgya|l known principle of the argument of complex variable
the dashed represent negative amplitude. The minimum energy pa{Hat holds in application€— C [34].

of the potential energy surface has also been included. To conclude this section we would like to point out that

The QSOS defined in this way has been numerically calcuthe computer effort involved in the calculation of the zeros

lated and full details will be given elsewhdi&l]. Due to the of the QSOS is not small in our case, since the integration

fact thatd is not an analvtic complex function. the techni erequired for the calculation of the Husimi function is done
sed b é'b'lset al. to gallc Iatepth):auerols é)f the H sf?rl: numerically [31]. The calculation of each point in the
u y LIl . u z usl Id(‘ﬂ’Pw) plane takes 7.5 seconds in an IBM Risc 6000 work-

functpn IS not dwgptly_apphcab_le. Accordingly we have use station, and to characterize each zero not less than 736 points
a suitable modification devised by us. The available

S . re required(the actual number of points depends on the
(#,P,) phase space plane is divided into square cells, anﬁudeterminacies encounteiei®3)].

then the number of zeros contained in each cell calculated.
This is done in the vector field associated to the QSOS ac-

cording to lll. RESULTS AND DISCUSSION
T In this section we discuss the results concerning the first
(¢,Py)—( ReD, ImP), (7) 100 quantum eigenstates of the LINC-LIiCN system. In Fig. 2

we show the wave function, zeros and QSOS of diatd 1

(in what followsN will be used as the state number starting
from N=1 for the ground staje It is seen that this state
presents a well defined wave function nodal structure, corre-

using the fact that the index of a cur{@2] is equal to the
number of zeros contained in the area enclosed [B3i In
our case the indeX is defined as

1 Imd sponding to the quantum numbers, (n,) = (0,14). Since it
T(y)=— % dl tan? m ” (8) is excited solely in the angular coordinate all maxima in the
2w Jy Red QSOS are located close to the border of the classically avail-



54 DISTRIBUTION OF ZEROS OF THE HUSIM. . . 2461

8.5

8.5
6.0 6‘0
5.5 5.6
5.0 5.0
5 46 Tas FOS
S 40 S0
3.5 35
3.0 3.0
2.5 I~ 25 -
2.0 L . ' 2.0 I L )
45 45
b
o ® a0 L (P) °
o
° o
i5 - 15 |
’; o —~ ° o ] °
) ° 5 oo o ]
s O < 0r ° ° 5 o
S’ ~— o ° o o
'y B > o e °
a, -15 at-15 °
] ©
_30 -
_45 1 ] 1
45
c
el (@
— 15
2
L or
@
Qﬂ _15 —
_30 -
45 t 1
o 45 90 135 180
¥ (deg)
FIG. 4. Same as Fig. 2 for the stdte-10. An extra contour line FIG. 5. Same as Fig. 2 for the irregular sthte-99.

representing 10°% of the maximum amplitude of the wave func-

ion h i . . .
tion has been included phase space, but more towards the inner part. However, this

able phase space area as can be appreciated in the figud@es not affect the structure of the distribution of zeros,
Moreover, the zeros are aligned along a curve lying verywhich is similar to that found in the previous case. Obvi-
close to theP,=0 axis. This result is in perfect agreement ously, the information about the excitation gnis contained
with the conclusions of Ref§23-25, which is not unex- in the other Poincarsurface of section, i.eHqsodp.P,)
pected since statl=11 is clearly regular. Let us consider corresponding tay=180° for the LINC isomer ogy=0° for
next the relationship existing between distribution of zeroghe LICN isomer. Similar results have been obtained for all
and wave function nodal structure. By comparing of péats states in our calculation which present a well defined nodal
and(b) of Fig. 2 it is apparent that there are as many zeros apattern.
nodal planes and that the location of théapproximately The criterion of the wave function nodal structure com-
coincides. This result is very interesting since it implies aplexity is necessarily qualitative. In particular, the number of
connection between Leboeuf and Voros criterion which isnodes is very sensitive to the wave function amplitude level
based on phase space considerations, and Stratt, Handy, amtich is considered. In general, one focuses on the high
Miller criterion which is based on configuration space con-values of the amplitudgL2] where the pattern is more clear.
siderations. Let us remark that the above result is characteBut when low levels are considered a much more compli-
istic of anharmonic systems, since in the case of a harmonicated nodal structure might emerge. A good example of this
oscillator all zeros accumulate at the origin of coordinates. is state number ten, which is shown in Fig. 4. In the part
A second example is presented in Fig. 3, where the resultsorresponding to the wave functi¢panel(a)] we have in-
corresponding to th&l=17 quantum state are shown. Ac- cluded, in addition to the contour levels used in the previous
cording to the nodal structure complexity criterion it corre-figures a low contour corresponding to 196 of the maxi-
sponds to a regular state with quantum numbersnum amplitude. According to the structure of these contours
(n,,ny)=(1,10). In this case there is excitation in tpe the classification is a little uncertain. If one just takes into
coordinate, which reflects in the fact that the maxima of theaccount the high level contours, the wave function presents a
QSOS are not located around the border of the availablevell defined nodal pattern corresponding to state
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FIG. 6. Same as Fig. 2 for the scarred stdte24. In panel(a)
we have plotted, superimposed, the scarring periodic @ristead
of the minimum energy pajh

FIG. 7. Same as Fig. 6 for the scarred stidte25.

creases the number of states that can be “accommodated” in

(n,,n,)=(1,4). However, when the low level contour is the regular regiotisee Fig. 8 beloy Moreover, since LiNC-
considered an extra, not very well defined, seminode appeatsCN has a potential surface with two separate wells, with
at #=117°. In panekb) it is seen that at the position of the states that behave differently with changing this parameter
seminode there is a zero, that in this case is not close to theauses the appearance of a complicated series of avoided
P,=0 axis. This result indicates that the distribution of ze-crossings, some isolated and others overlappiij. The
ros constitutes a very sensitive criterion for analyzing thedisentanglement of this problem is not easy, and this is a task
nodal pattern complexity. that we are performing at present. Some preliminary results

A lot of caution must be exerted when considering lowhave been published in R¢B85], in which we showed how a
contours of the wave functions, since they ultimately reflectransition from chaogscarred statg@do regularity takes place
the structure of the basis set functions. In our case we havas# is decreased.
checked the robustness of our conclusions by repeating se- As we stated in the Introduction the criterion of nodal
lected calculations with a basis set of 2016 elements whiclpattern complexity presents some problems when there are
gives 900 converged eigenvalues. classical resonances in the systgh3]. In this case very

In Fig. 5 the results corresponding to stdte=99 are often some wave functions appear scarred by any of the two
shown. The nodal pattern is clearly irregular, and the zeroperiodic orbits, one stable and the other unstable, corre-
are spread uniformly over the available phase space, again gponding to the resonance. In the rest of the discussion we
agreement with Leboeuf and Voros result. will refer to these two periodic orbits as complementary in

Let us point out that all calculations that we are reportingthe sense that they come from the same unperturbed resonant
here have been obtained fhr=1 a.u.. Thus the results seem invariant torug7].
to indicate that this value df is low enough in our system to The LINC-LICN system, due to its dynamical complexity,
allow for this type of studies. On the other hand changing theresents a great number of resonances even at modest exci-
value of# in a generic Hamiltonian like ours would intro- tation energies, and we have presented a systematic study of
duce additional complications. For example, loweringn-  the corresponding bifurcation diagrams in R&6]. Among
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. . .. cl
of all them there is one resonance, belonging to the pnnupaiI
family, that has a profound influence in the quantum me

chanics of this system in the range of energies considered
this paper(up to 4610 cm'). The associated unstable and
stable periodic orbits are shown in Figgaeand 1a) respec-
tively. In Fig. 8 we also present a composite Poincandace
of section, calculated at an energy of 2568.03 ¢ntinter-
mediate between the eigenvalues of states 24 andi@5
which the corresponding fixed points are clearly visitite
angles and squares, respectiyealy the middle of a chaotic
sea. From Figs. (@) and fa), it is apparent that these orbits
“scar” the wave functions of state=24 andN=25. This

is also appreciated in Figs(@ and 7c), where it is seen that
the corresponding QSOS present maxima centered on t
classical fixed pointgsee Fig. 8 The examination of the
distribution of zeros in Figs.(6) and 7b) reveals some in-
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IV. CONCLUSIONS

In this paper we have presented a quantum study in phase
space of the vibrational states of a realistic model for the
molecular isomerizing system LiINC-LiCN for excitation en-
ergies up to 4610 cm'. Due to the characteristics of the
potential energy surface, the Li atom can execute large am-
plitude motions in the bending coordinate. This causes the
system to present a very chaotic behavior, even at low vibra-
tional energies. This study has been carried out by numeri-
cally calculating QSOS based on the Husimi function. Al-
though the maxima of these QSOS contain information about
the correspondence between classical and quantum mechan-
ics, in this paper we have focused on the corresponding dis-
tribution of zeros.

The distribution of zeros of the Husimi function as a cri-
terion for chaos in quantum mechanics is relatively h2g@|
and consequently has not received much attention in the lit-
erature yet. Leboeuf and Voros found that for a particular
ass of systems these zeros appear localized on a line for
assically integrable systems, while they spread all over the

‘available phase space for systems that behave chaotically.

™ n this paper we have investigated the validity of the con-
clusion of Leboeuf and Voros conclusions in generic Hamil-
tonian systems. Our numerical calculations for the LiINC-
LICN molecule indicate that this seems to be the case.
Moreover, we have also seen that this criterion is related to
that of Stratt, Handy, and Millef12] based on the nodal
complexity of the wave functions. Specifically, we have seen
that the number of zeros is equal to the number of nodes of
the wave functioneven if they are not completely well de-
fined and that their positions coincide. Finally, and we be-
lieve that this constitutes the main contribution of this paper,

r?Sr states which are scarred by periodic orbits some zeros

appear localized on the fixed points of the Poinaaagp of
the complementaryin the sense of stable-unstabfgeriodic

teresting results. In the first place, and similarly to what isg i
obtained for regular states, in both cases there are as many

zeros as nodal planéthat in this case must be counted along

the periodic orbit. Secondly, and more important, two types
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